АННОТАЦИЯ
Биохимические основы церебрального энергетического обмена
Современные методы оценки церебрального энергетического обмена
Энергетический обмен при развитии и старении мозга
Закономерности изменения церебрального энергетического обмена при различных функциональных состояниях
Взаимосвязь церебрального энергетического обмена с характеристиками иммунитета
Церебральный энергетический обмен и некоторые психофизиологические характеристик
Энергетические характеристики деятельности мозга и функциональная межполушарная асимметрия
Современные исследования природы уровня постоянного потенциала
Скачать монографию В.Ф. Фокина и Н.В. Пономаревой "Энергетическая физиология мозга"

Биохимические основы церебрального энергетического обмена

Процессы получения энергии в мозге и других органах в принципе аналогичны. При расщеплении высокомолекулярных веществ - глюкозы, жирных кислот и кетоновых тел, а также некоторых аминокислот, освобождается энергия, которая накапливается в виде макроэргических соединений – АТФ и креатинфосфата, и затем расходуется для поддержания структуры клетки и обеспечения ее функций. По интенсивности энергетических процессов мозг занимает ведущее место в организме. Наибольшая скорость метаболизма выявлена в коре большого мозга, наименьшая в спинном мозге. Особенности энергообмена мозга заключаются в том, что он практически не содержит запаса веществ, используемых в качестве энергетических субстратов, и нуждается в их постоянном поступлении через мозговой кровоток, кроме того энергетические потребности мозга удовлетворяются в основном благодаря катаболизму глюкозы (85-90%). В качестве дополнительных энергетических субстратов мозг использует аминокислоты, главным образом глутамат, а также свободные жирные кислоты и кетоновые тела.
Аэробное и анаэробное расщепление глюкозы сопровождаются накоплением кислых продуктов обмена – молочной кислоты при гликолизе и угольной кислоты при цикле Кребса. Однако существуют механизмы, поддерживающие кислотно-основной баланс в мозге и в организме в целом на достаточно постоянном уровне. Это газообмен легких и выделительные функции почек, а также буферные свойства жидких сред организма, зависящие от присутствия бикарбонатов, неорганических фосфатов и белков, которые соединяются с избытком кислот или оснований и образуют вещества, не влияющие на рН. Кроме того, в мозге и ликворе существуют специфические механизмы поддержания рН. Это избирательная проницаемость ГЭБ, целенаправленный транспорт ионов и компенсаторные изменения обмена веществ. Транспортным системам, осуществляющим целенаправленный транспорт ионов НСО3- и Н+ через ГЭБ принадлежит значительная роль в поддержании церебрального рН. Их деятельность, очевидно, осуществляется благодаря изменениям электрохимического потенциала на границе ГЭБ, способствующему выведению или наоборот всасыванию ионов водорода из мозга и ликвора в кровь.
Установлена тесная взаимосвязь между функциональной активностью мозга, его энергетический обменом и мозговым кровотоком. При активации нейронов происходит их деполяризация, в результате которой в межклеточной жидкости накапливаются ионы калия, являющиеся пусковым фактором усиления мозгового кровотока. В нейронах при этом повышается аэробное и анаэробное окисление глюкозы, сопровождающееся накоплением кислых продуктов обмена – лактата и углекислоты. Увеличение концентрации водородных ионов способствует длительному усилению мозгового кровотока.
Несмотря на деятельность механизмов, направленных на поддержание постоянства рН, при повышении функциональной активности мозга, а также при многих видах патологии (эпилептические судороги, ишемия, менингиты) происходит сдвиг рН мозга в кислую сторону - развивается ацидоз. Закисление снижает функциональную активность нейронов, влияет на метаболические процессы, в частности, усиливает свободно-радикальные процессы, а в случаях значительных изменений рН вызывает гибель нейронов по механизмам некроза или апоптоза.


Главная страница

E-mail:fvf@mail.ru